Updates on the Identification & Management of Common Brain Tumors

James D. Battiste, MD, PhD

Assistant Professor Department of Neurology The University of Oklahoma Health Sciences Center

Describe the most common presenting symptoms for Gliomas.

- Describe new molecular genetic markers that assist in defining glioma subtypes by the new WHO 2016 classification scale.
- Outline the updated NCCN Guidelines for treatment of malignant gliomas.
- Identify novel treatments currently in clinical trials for gliomas including immune therapies and precision medicines.

Incidence

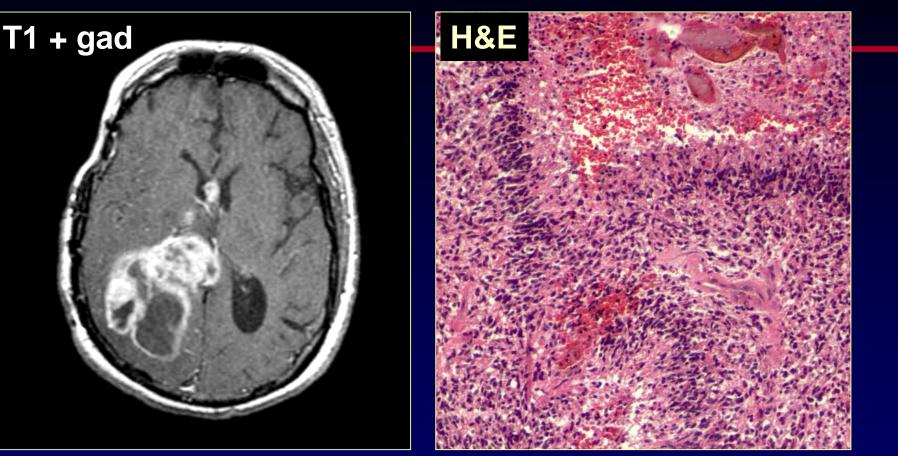
- Central Brain Tumor Registry United States (CBTRUS) database
- 62,930 new cases of malignant and non-malignant brain tumors in 2007
- Estimated 21,810 new cases of malignant CNS tumors in 2008, estimated deaths 13,070
 - Relative risks: 1.38 Men vs Women
 - 3.18 Elderly vs Young adults
 - 1.86 Caucasian vs. African-American
- Malignant brain tumors (22,070 cases estimated in 2009) account for 1.42% of all primary malignant cancers in the US (American Cancer Society 2009) but account for a disproportionate share of cancer morbidity and mortality (CDC 2008).

PRESENTATION OF GLIOMAS

Presentation of a Brain Tumor

- 1/3 Asymptomatic
- Generalized
 - ICP, vasogenic edema
 - Headaches, lethargy, rausea/vomiting, confusion
 - Personality Changes
- Focal (or multi-focal)
 - Seizures
 - Hemiparesis
 - Visual field deficits
 - Aphasia
 - Ataxia
 - Etc.

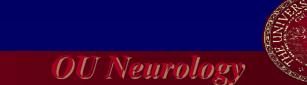
Not one single pathognomonic presenting sign or symptom. Look for clinical picture.


Diagnosis

Imaging

- MRI with gad, (most sensitive)
 - Perfusion
 - Spectroscopy
- CT: hypodense lesion (usually edema)
- ► PET scan
- Biopsy
 - Gold Standard
 - Therapeutic potential (resection)
 - (Post-op MRI 24-48 hours)

Glioblastoma (WHO Grade IV)



Enhancing mass, cystic components, variable necrosis

Highly cellular, pseudo-palisading necrosis, microvascular prolif.

Median survival: 14 months

MOLECULAR MARKERS AND CLASSIFICATION OF GLIOMAS

Gliomas (previous classification)

	Tumor cell of origin or differentiation sub-type			
	Oligodendroglioma	Mixed: Oligoastrocytoma	Astrocytoma	
Grade I, "benign"			Pilocytic Astrocytoma	
Grade II, Low grade glioma (LGG)	Oligodendroglioma	LGG oligoastrocytoma	Astrocytoma	
Grade III, anaplastic	Anaplastic oligodendroglioma	Anaplastic oligoastrocytoma	Anaplastic Astrocytoma	
Grade IV	GBM with oligodendroglia features		GBM	


New WHO Molecular Classification of Gliomas

WHO 2016

New classification of Primary Brain Tumors

The Cancer Genome Atlas (TCGA)

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in *PDGFRA*, *IDH1*, *EGFR*, and *NF1*

Cancer Cell Volume 17, Issue 1 2010 98 - 110

Biomarkers

Important Biomarkers: 1p/19q co-deletion IDH1/IDH2 mutation MGMT methylation status ATRX H3K27M mutation

Secondary EGFR vIII & EGFR alterations cMet alterations

Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Jansen M, Yip S, Louis DN, Lancet Neurol. 2010;9(7):717
 Table 1.3 Immunohistochemical markers commonly used in brain tumor classification

Neuronal and neuroendocrine markers Synaptophysin, neurofilament proteins, NeuN, chromogranin A Glial markers Glial fibrillary acidic protein (GFAP), S-100 protein, MAP2

Epithelial markers Cytokeratins, epithelial membrane antigen (EMA)

Melanocytic markers Melan A, HMB-45

Mesenchymal markers Vimentin, desmin, smooth muscle actin (SMA), myoglobin

Blood cell markers CD45 (pan-leukocytes), CD20 (B cells), CD3 (T cells), CD68, HLA-DR (monocytes, macrophages, microglia), CD138 (plasma cells)

Germ cell markers β-HCG, alpha-fetoprotein (AFP), placental alkaline phosphatase (PLAP), human placental lactogen (HPL), OCT4 (germinomas), c-Kit (germinomas), CD30

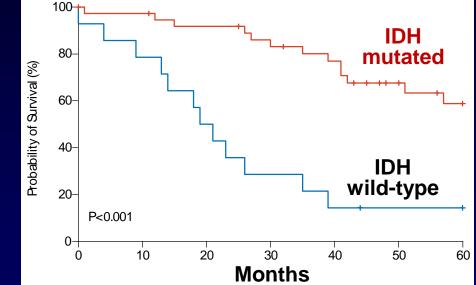

(embryonal carcinomas)

Pituitary hormones Prolactin, ACTH, TSH, FSH, LH, GH

Proliferation marker Ki-67 (MIB1)

Other useful markers

p53, CD34, thyroid transcription factor 1 (TTF1), Cdx2, prostate-specific antigen (PSA), thyreoglobulin, estrogen and progesterone receptors, HER2/Neu, EGFR, INI1



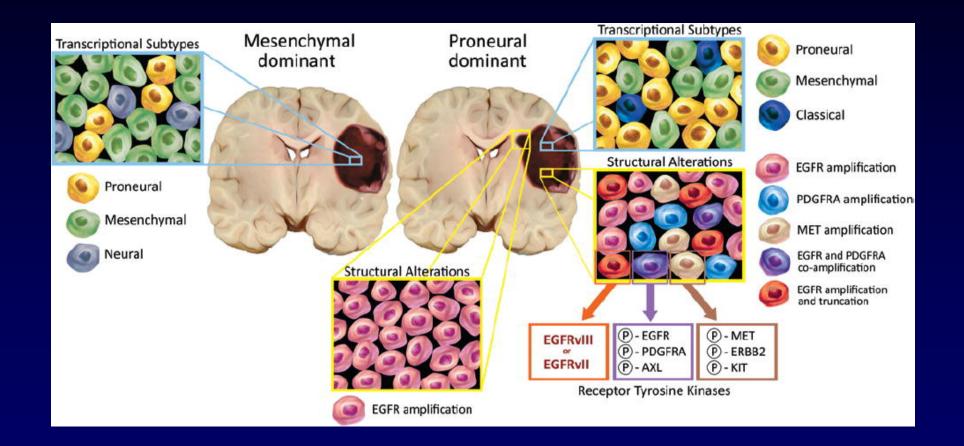
IDH mutations: Better overall survival Excellent prognostic marker

100-80-Probability of Survival (%) Probability of Survival (%) 60 **IDH** 40mutated 20-**IDH** P=0.002 wild-type 20 30 50 10 40 60 **Months**

Glioblastoma

Anaplastic astrocytoma

(70% mutated)



Yan et al, N Engl J Med 2009;360:765

(12% mutated)

Secondary GBM

GBM Heterogeneity

OU Neurology

Aum and Kim, et. al., Journal of Neurosurgery, 2014

TREATMENT OF GLIOMAS

Symptom management

Steroids (next slide) AED's Stimulants Anti-Depressants Monitor for clots: hypercoagulable state Autonomic instability Etc.

Edema

Steroids

- Vasogenic edema can cause/worsen symptoms
- Dexamethasone best choice
 - Minimal mineralocorticoid effect
- Acute:
 - 10 mg IV bolus
 - 4 mg IV q6hr
- Chronic:
 - PO dosing, long half life
 - Plasma: 2-4 hours,
 - Biological effect 36-54 hours
 - Divide BID or TID
 - Slow taper, changes q3 days, q7 days, or q2weeks
 - Long tail, decreasing only by 1 mg.
 - Monitor symptoms to tailor therapy.

Grade III Anaplastic Oligodedroglioma Grade III Anaplastic Astrocytoma Grade IV Glioblastoma

Treatment

- Maximal resection
- Concurrent Radiation and Temodar
- Adjuvant Temodar

Time frame

- Initial diagnosis
- ~6 weeks (IMRT)
- 4 week cycles, plan for 12 cycles minimum

Avastin at recurrence

IV infusion every 2 weeks

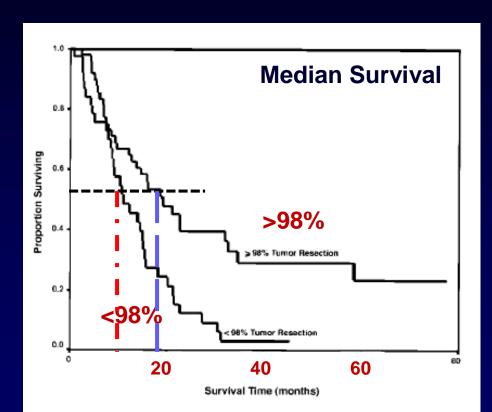
Surgical Resection

The very small hole through which it was taken out.

Gross Total Resection

General principle:

- Cytoreduction
- Improve effectiveness of adjuvant therapy.
- Balance with excision of eloquent areas



Gross Total Resection

TABLE 5				
Survival compared with extent of tumor resection $*$				
Extent of Tumor Resection (%)	Median Survival in Mos (95% CI)	Rate Ratio (95% CI)	p Value	
all 416 patients w/ GBM†				
≥85	10.9 (9.7–12.2)	1.2 (0.9-1.5)	0.22	
≥87	10.8 (9.4-12.2)	1.2 (0.9-1.5)	0.15	
≥8 9	10.9 (9.6-12.1)	1.5 (1.1-1.0)	0.04	
≥90	10.9 (9.8–12.0)	1.4 (1.1–1.7)	0.02	
• ≥9 3 • • • • • • • • • • • • • • • • • • •	11.2 (9.6-12.8)	1.3 (1.1 –1.6)	0.01	
≥94 ≥95	11.3 (9.9–12.7) 11.6 (10.2–13.0)	1.4 (1.2–1.7) 1.4 (1.1–1.7)	0.01	
≥95 ≥96	12.6 (11.0–14.3)	1.4(1.1-1.7) 1.5(1.2-1.9)	0.0001	
	-13.0-(11.4-14.6) -	1.6 (1.3-2. 0)	-<0.0001	
≥98	13.0 (11.4-14.6)	1.7 (1.4-2.1)	< 0.0001	
<u>≥99</u>	-13.1 (11.6-14.6) -	1.7 <u>(</u> 1.4-2.1)	-<0.0001	
100	13.1 (11.6-14.7)	1.7 (1.4-2.2)	< 0.0001	
233 untreated patients w/ GBM‡				
≥85	10.8 (9.5–12.1)	0.9 (0.6–1.3)	0.61	
≥90	10.9 (9.4–12.4)	1.1 (0.8–1.5)	0.62	
≥93	11.6 (10.0–13.2)	1.1 (0.8–1.5)	0.48	
≥94	11.9 (10.1–13.6)	1.2 (0.8–1.6)	0.36	
≥95 ≥96	12.1 (10.3–13.9) 12.6 (11.0–14.2)	1.2 (0.9–1.7) 1.3 (1.0–1.8)	0.15	
≥90 ≥97	12.6 (11.1–14.2)	1.3(1.0-1.8) 1.4(1.1-1.8)	0.04	
≥97 ≥98	13.0 (11.4–14.6)	1.4(1.1-1.8) 1.4(1.17-1.9)	0.04	
≥99	13.1 (11.2–15.1)	1.5 (1.1–2.0)	0.006	
100	13.1 (10.9–15.3)	1.5 (1.1–2.0)	0.006	

* Comparing \geq 85% with < 85%, \geq 90% with < 90%, and so forth. † Less than 89% tumor resection was not associated with increased survival time in this subgroup.

[‡] Less than 97% tumor resection was not associated with increased survival time in this subgroup.

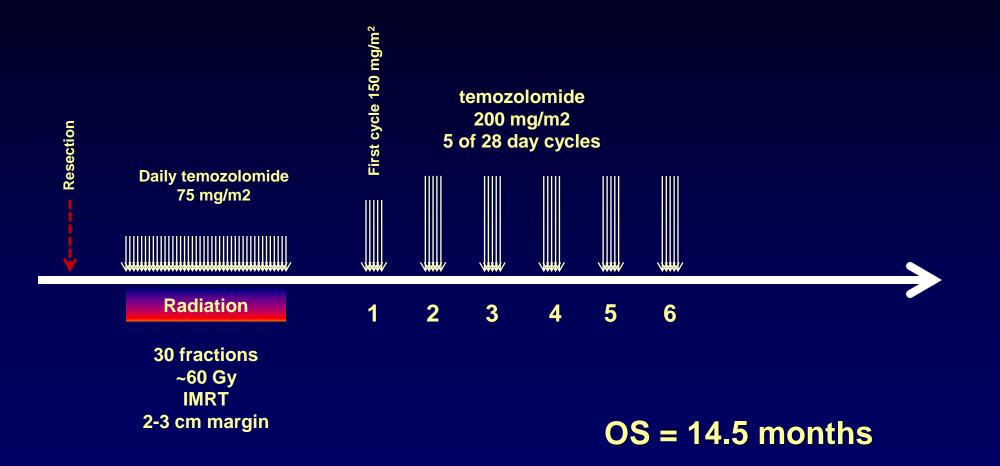
Lacroix, et al, <u>J Neurosurg.</u> 2001 Aug;95(2):190-8.

Grade III Anaplastic Oligodedroglioma Grade III Anaplastic Astrocytoma Grade IV Glioblastoma

Treatment

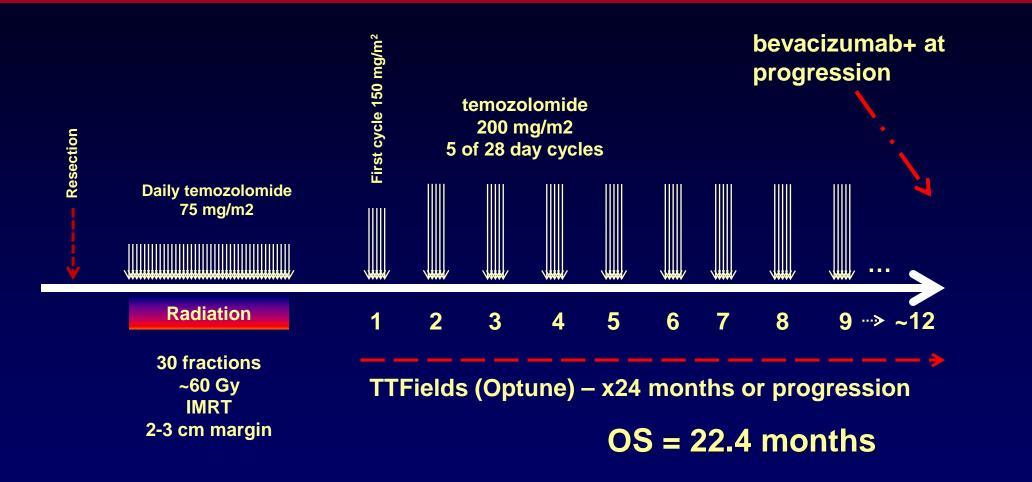
- Maximal resection
- Concurrent Radiation and Temodar
- Adjuvant Temodar

Time frame

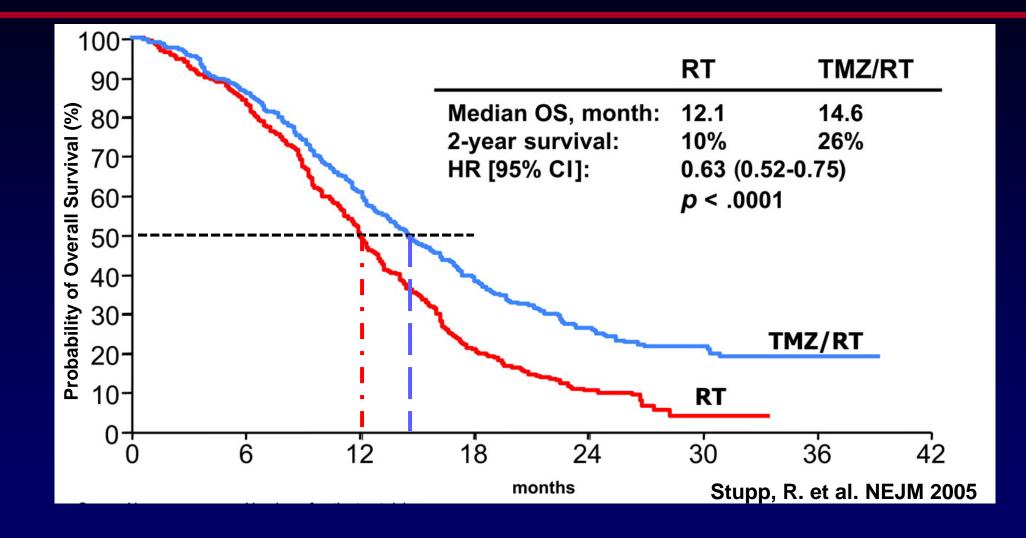

- Initial diagnosis
- ~6 weeks (IMRT)
- 4 week cycles, plan for 12 cycles minimum

Avastin at recurrence

IV infusion every 2 weeks



GBM Treatment: Stupp protocol, 2005

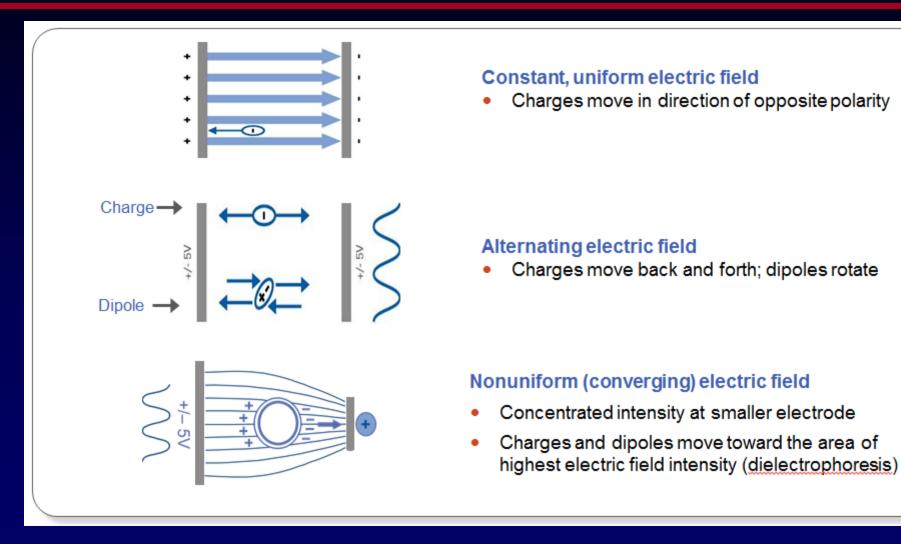


GBM Treatment: New Standard 2015/2017

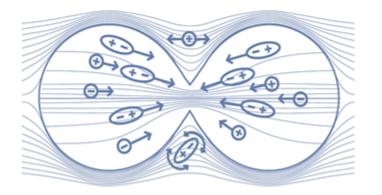
Standard Therapy: Concurrent daily Temozolomide and Radiation + 6 cycles Temozolomide (5 of 28 days)

OU Neurology

Stupp, et al, 2005, NEJM


Alternating Electrical Field Treatment Device (Tumor Treating Fields = TTF)

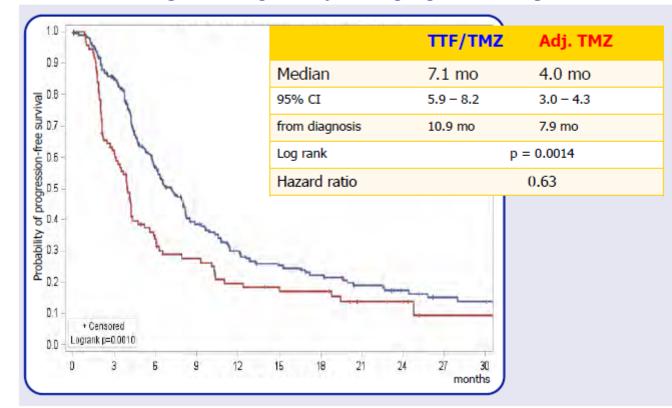
NCCN: Level 1 evidence for initial treatment


Alternating Electrical Fields – Mechanism of Action

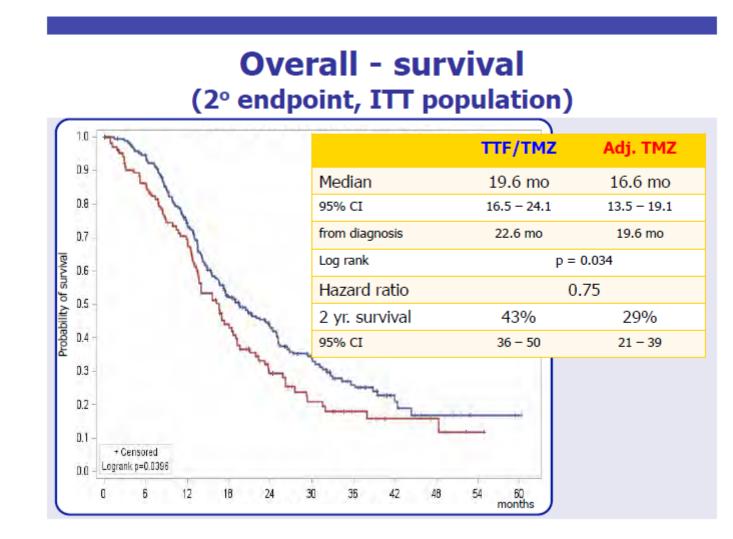
Alternating Electrical Fields – Mechanism of Action

Metaphase—alternating electric fields (TTFields)

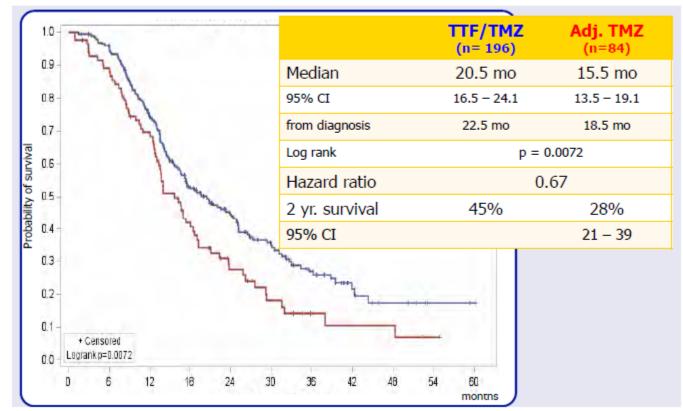
- Disrupt alignment of highly polarized tubulin subunits
- Disrupt microtubule spindle formation during mitosis and may ultimately lead to apoptosis


Telophase-nonuniform electric field

- A change in cell shape during telophase causes a nonuniform electric field
- Polar components move to cleavage furrow
- Cell cannot divide properly, which may ultimately lead to apoptosis


EF-14, Tumor Treating Field Therapy

Progression-free survival (1° endpoint, ITT population)


EF-14, Tumor Treating Field Therapy

EF-14, Tumor Treating Field Therapy

Overall - survival

(2° endpoint, as treated [crossover pts excluded])

FDA Approved second-line treatment

bevacizumab

- First line in recurrent Glioblastoma approved in 2009
- Initial responses: ~60%
- More realistic: subgroups with short/long PRs
- Combinations: +TMZ; +Irinotecan
- If recurs after bevacizumab: Highly migratory phenotype in the recurrent setting
- No change in Overall Survival

bevacizumab

Biological VEGF inhibitor antibody Anti-angiogenic ■ IV infusion 10 mg/kg Every 2 weeks basically for rest of life > Or, stop if a complication arises If recurs after bevacizumab: Highly migratory & aggressive phenotype

CLINICAL TRIALS AND OTHER ADVANCES

Therapies in the Pipeline (old slide)

Cancer Vaccines DCVax (still waiting on final data) ► HSPPC-96 vaccination (trial closed...) EGFR vaccination, (Rindopepimut, failed Phase III) Oncolytic Virus Duke: PVS-RIPO (modified poliovirus) MD Anderson: DNX2401 Chemotherapy **OKN-007 TRC-105** Higher Dose radiation and Proton Therapy

New Therapies Pipeline

Bevacizumab plus INC-280 (cMET inhibitor) CXCR4 inhibitor **REGN-2810 (PD-1 inhibitor) plus plasmid adjuvant** Niraparib – IDH1 and IDH2 mutations induce HRD LITT plus chemo – opens BBB OKN-007 plus TMZ (OKN opens BBB and overcomes) TMZ resistance

Clinical Trials

NCCN	National Comprehensive Cancer Network®	NCCN Guidelines Version 1.2016 Table Central Nervous System Cancers	e of Contents	NCCN Guidelines Index Table of Contents Discussion
NCCN Ce Summary Adult Low	ntral Nervous Sy of the Guidelines -Grade Infiltrative	stem Cancers Panel Members stem Cancer Sub-Committee Members s Updates e Supratentorial Astrocytoma/	the best man patient is in a	in clinical trials is

BN-001: Dose Escalation of Photon vs. Proton Therapy

Standard dose Photon 60 Gy of radiation
High dose Photon 75 Gy of radiation
Proton Therapy

Results pending. Proton Therapy arm still open

RTOG 1205 – Recurrent Glioblastoma

Repeat radiation and bevacizumab
Bevacizumab, q2weeks
Radiation, 30 Gy in 15 fractions
Results still pending

OKN-007, Phase 1b (Nitrone compound)

- Recurrent GBM (heavily pre-treated)
- 3x3 Dose escalation trial with modified expansion phase
- Results
 - 18 patients treated
 - No DLT's
 - Only possible AE's: headache, increased BUN, generalized pain, nausea (n=1)
 - Partial response (n=2), stable disease (n=7), progressive disease (n=9).
 - Median PFS was 2.3 months, and median OS was 11.5 months
 - 6 month PFS of 15.38% and 6 month OS of 77% with a 1 year OS of 38%

OKN-007, Phase 1b

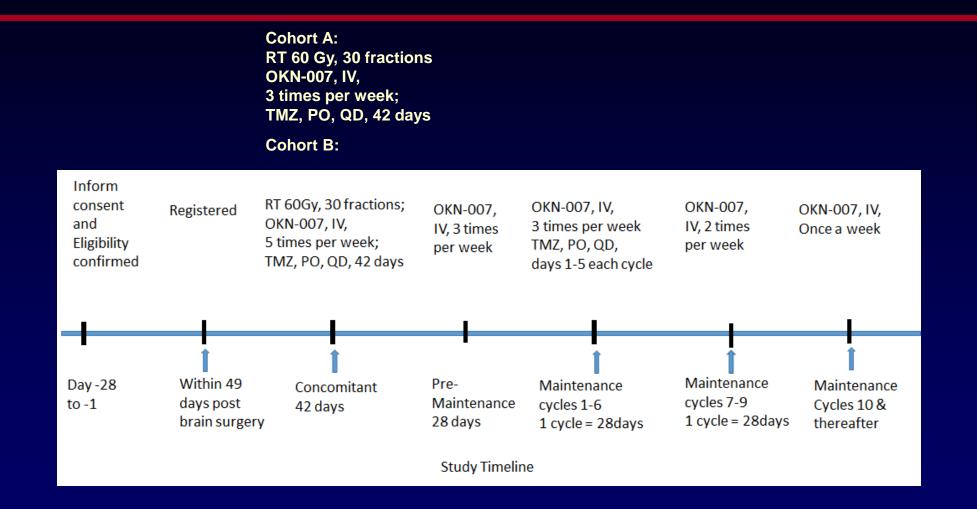
Recurrent GBM (heavily pre-treated)

Additional salvage chemotherapy after bevacizumab failure was given to 19 patients. The median progression-free survival (PFS) among these 19 patients was 2 months, the median OS was 5.2 months, and the 6-month PFS rate was 0%.

Neurology® 2009;73:1200-1206

- Partial response (n=2), stable disease (n=7), progressive disease (n=9).
- Median PFS was 2.3 months, and median OS was 11.5 months

6 month PFS of 15.38% and 6 month OS of 77% with a 1 year OS of 38%



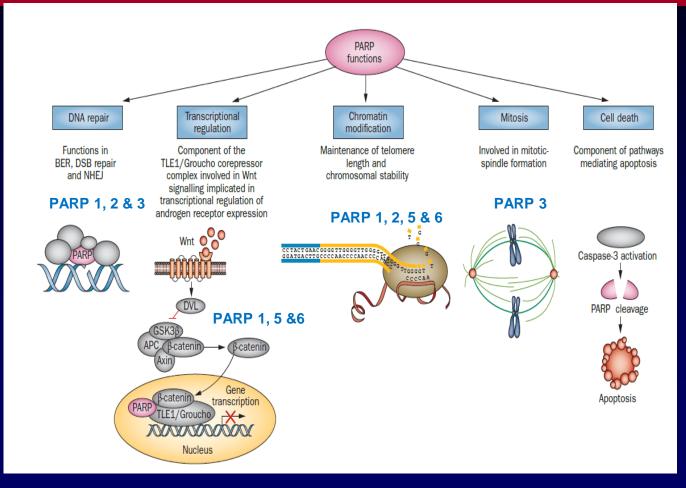
OKN-007 & TMZ & Radiation

Feasibility Pilot Study of OKN-007 in Combination with Adjuvant Temozolomide Chemoradiotherapy in Patients with Newly Diagnosed Glioblastoma

New OKN-007 trial: Schema

New Therapies – Precision Medicine

PARP inhibitors
BGB-290-104
Niraparib
PI3K inhibitors
GDC-0084



BGB-290-104 STUDY CNS-26

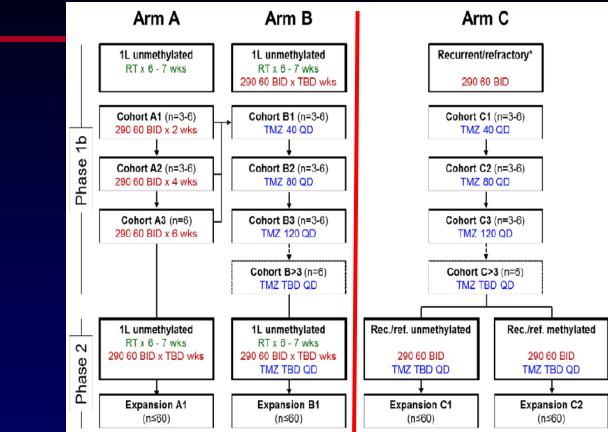
A Phase 1b/2 study to assess the safety, tolerability and efficacy of BGB-290 in combination with radiation therapy and/or temozolomide in subjects with first-line or recurrent/refractory glioblastoma

Different Biological PARP Functions

Sonnenblick et al Nat Rev Clin Oncol 12:27-41 (2015)

OU Neurology

v1.1 14Jun2017


BGB-290-104 Study Design

Phase

₽

Phase

N

* During dose escalation, unmethylated and methylated GB are allowed.

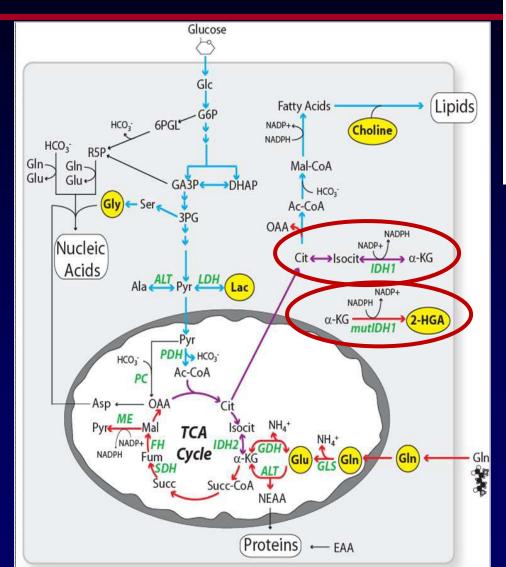
1L = first-line; methylated = glioblastoma with methylated MGMT promoter; rec./ref. = recurrent/refractory;

RT = radiation therapy; TBD = to be determined; unmethylated = glioblastoma with unmethylated *MGMT* promoter; wks = weeks

<u>BGB-290</u>: 60 BID = BGB-290 60 mg twice daily; <u>TMZ</u>: 40/80/120/TBD QD = temozolomide 40/80/120/TBD mg once daily; in Arms A and B given for the time period of BGB-290 administration, in Arm C given on Days 1 to 21 of each 28-day cycle

Patients with GBM diagnosis

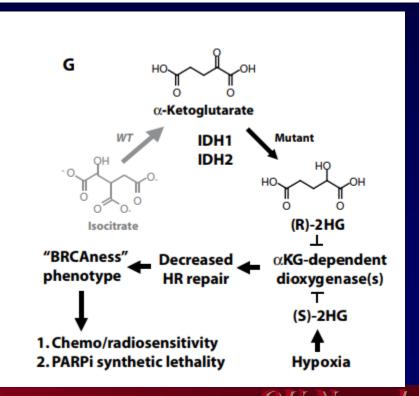
- 1. Initial diagnosis
- 2. Recurrent GBM



Niraparib Trial, Recurrent Glioma

PARP inhibitor, monotherapy Any recurrent glioma (Grade II-IV) Dose escalation ▶3 dose levels 6 patients each, with expansion phase Will be tracking IDH mutation status and LOH status (HRD), (potential for increased response).

Accumulation of 2-Hydroxyglutarate (2HG) due to IDH mutation produces HRD



SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity

Parker L. Sulkowski,^{1,2}* Christopher D. Corso,¹* Nathaniel D. Robinson,¹ Susan E. Scanlon,^{1,3} Karin R. Purshouse,¹ Hanwen Bai,² Yanfeng Liu,¹ Ranjini K. Sundaram,¹ Denise C. Hegan,¹ Nathan R. Fons,^{1,3} Gregory A. Breuer,^{1,3} Yuanbin Song,⁴ Ketu Mishra-Gorur,⁵ Henk M. De Feyter,⁶ Robin A. de Graaf,⁶ Yulia V. Surovtseva,⁷ Maureen Kachman,⁸ Stephanie Halene,⁴ Murat Günel,^{2,5} Peter M. Glazer,^{1,2†} Ranjit S. Bindra^{1,3†}

Choi, et al, Nat Med 2012

GDC-0084

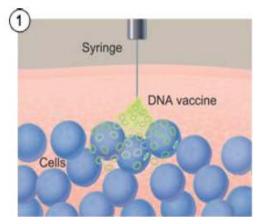
 A phase 2a study to evaluate the safety, pharmacokinetics and clinical activity of the PI3K/mTOR inhibitor GDC-0084 administered to patients with glioblastoma multiforme characterized by unmethylated O6-methylguaninemethyltransferase promoter status
 Initially diagnosed GBM, MGMT unmethylated, can screen up to the end of radiation and Temodar.

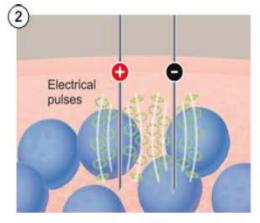
- Nonclinical studies have demonstrated that GDC-0084 inhibits proliferation of a large number of glioma cell lines in vitro and inhibits tumor growth in intracranial and subcutaneous mouse xenograft models of human glioblastoma.
- PI3K can promote tumor cell growth and migration/invasion of tissue

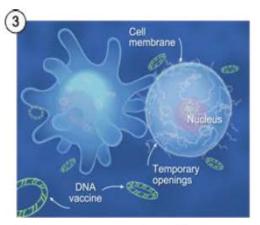
New Therapies – Immunotherapy

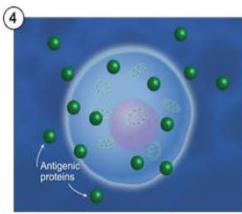
Checkpoint Inhibitors

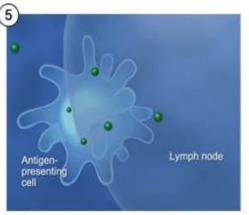
- Checkmate recurrent treatment failed
- Vaccines
 - Rindopepimut failed
- New studies with combination therapies

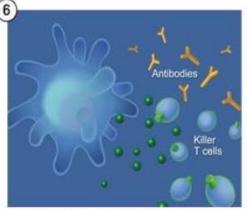



CNS-28 (GBM-001) AN OPEN-LABEL, MULTI-CENTER STUDY OF INO-5401 AND INO-9012 DELIVERED BY ELECTROPORATION (EP) IN COMBINATION WITH <u>REGN2810</u> IN SUBJECTS WITH NEWLY-DIAGNOSED GLIOBLASTOMA (GBM)


Enhanced DNA Delivery by in vivo Electroporation


DNA vaccine delivered into muscle or skin.


Electroporation: millisecond electrical fields applied.


Temporary pores in cell membrane; significant cellular uptake of vaccine.

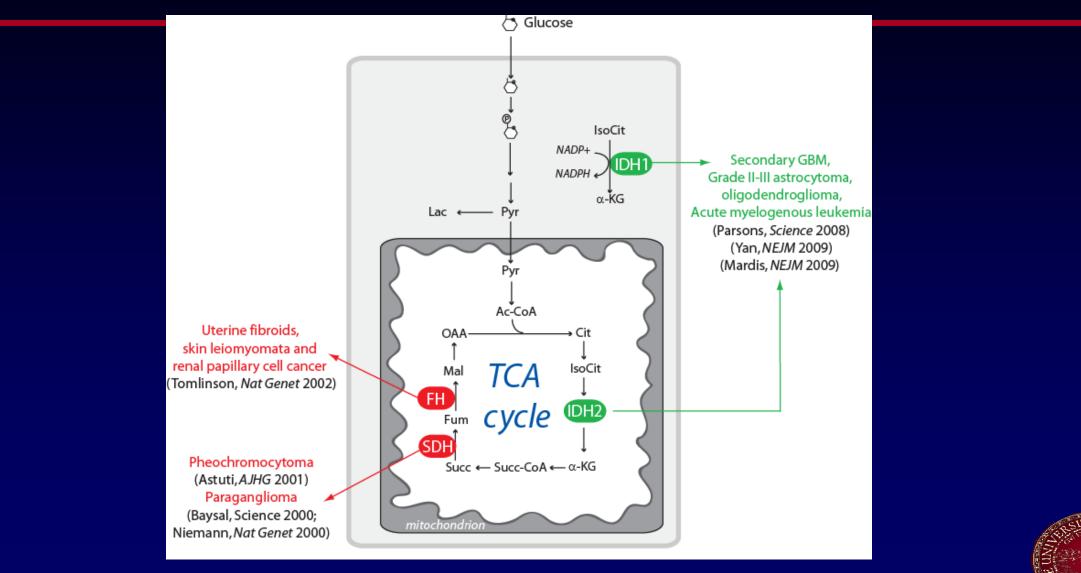
Cell membrane reseals. Cellular machinery uses the DNA code to produce one or more of the disease antigens coded by the DNA vaccine.

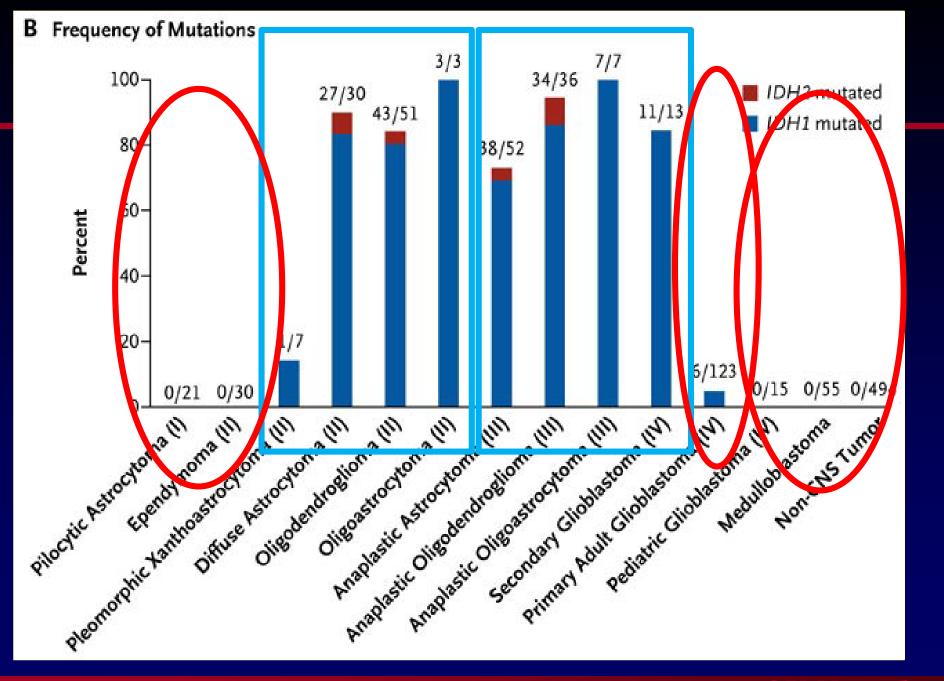
Antigen-presenting cells engulf the antigens and carry them to lymph nodes.

Antibodies or killer T-cells that can eliminate cancerous or infected cells are produced.

Treatment

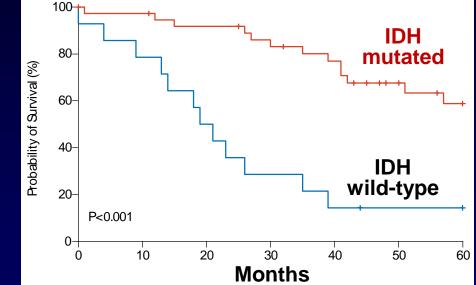
- INO-5401 (3 mg of each WT-1, PSMA and hTERT plasmids) combined with 1 mg INO-9012, (total 10 mg of DNA) IM injection followed by EP given every three weeks for four doses, then every 9 weeks; and
- **REGN2810 (cemiplimab)** (350 mg/dose IV every three weeks)
- Radiotherapy (RT), given in a hypofractionated schedule (40 Gy over three weeks)
- Temozolomide (TMZ) concurrent with and following radiotherapy for 6 cycles, initially for all subjects and the remaining cycles for MGMT-methylated or indeterminate status




APPLICATIONS IN GLIOMA

MOLECULAR DISCOVERIES

Sequencing of GBMs led to the discovery of mutations in Isocitrate Dehydrogenase (IDH)


Yan et al, NEJM 2009

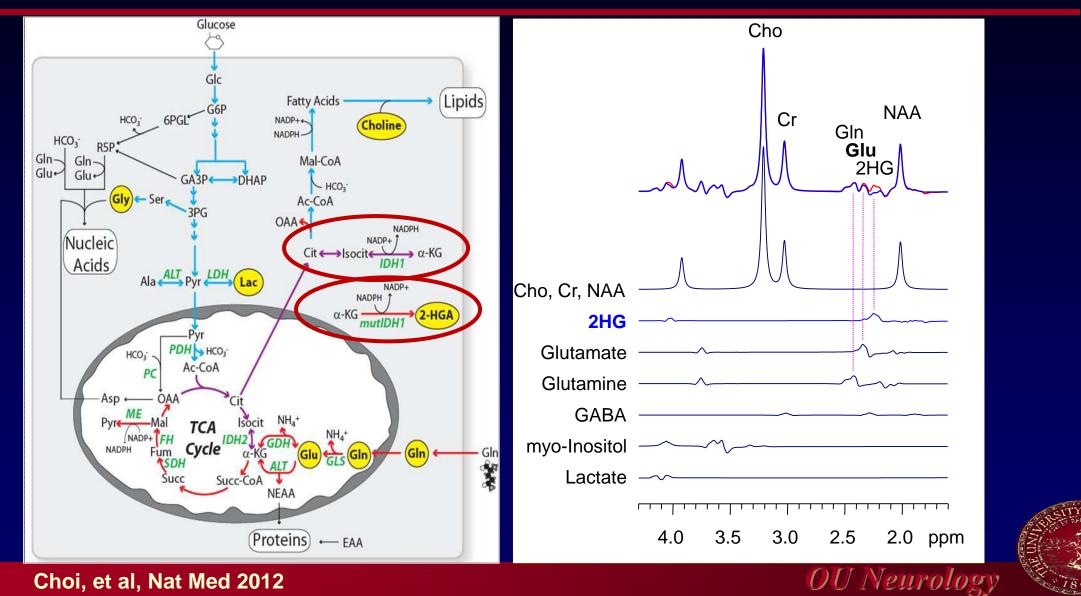
IDH mutations: Better overall survival Excellent prognostic marker

100-80-Probability of Survival (%) Probability of Survival (%) 60 **IDH** 40mutated 20-**IDH** P=0.002 wild-type 20 30 50 10 40 60 **Months**

Glioblastoma

Anaplastic astrocytoma

(70% mutated)



Yan et al, N Engl J Med 2009;360:765

(12% mutated)

Secondary GBM

Accumulation of 2-Hydroxyglutarate (2HG) 2HG can be imaged by MR spectroscopy

Choi, et al, Nat Med 2012

THE END

SORT OF... QUESTIONS...

